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ABSTRACT

In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected
to the classical Rossby basin modes of a flat-bottom (constant depth), rectangular basin. First, the spectrum
of basin modes is calculated for the Argentine Basin, by performing a normal-mode analysis of the baro-
tropic shallow-water equations. Then a homotopy transformation is performed that gradually morphs the
full-bathymetry geometry through a flat-bottom configuration into a rectangular basin. Following the
eigenmodes through this transition establishes a connection between most of the basin modes and the
classical Rossby basin modes of a rectangular geometry. In particular, the 20-day mode of the Argentine
Basin is identified with the lowest-order mode of classical theory. Sensitivity studies show that the decay
rate of each mode is controlled by bottom friction, but that it is insensitive to lateral friction; lateral friction
strongly impacts the oscillation frequency. In addition, the modes are found to be only slightly sensitive to
the presence of a background flow.

1. Introduction

In the first part of this study (Weijer et al. 2007,
hereinafter Part I), statistical analyses of altimeter data
suggested that more than one mode of variability may
be present in the Argentine Basin. This conclusion may
reconcile several studies reporting on modes of vari-
ability with conflicting periods (Weatherly 1993; Fu et
al. 2001; Hughes et al. 2007). It was also found that
some of the modes identified in altimeter data were
consistent in their oscillation period and spatial pattern

with barotropic basin modes of the Argentine Basin,
determined for a shallow-water context. In fact, a nor-
mal-mode analysis revealed an entire spectrum of such
basin modes.

The purpose of this paper is to understand the phys-
ics of propagation of the Argentine Basin modes. In-
stead of analyzing their dynamical balances in detail,
we will search for connections between these modes
and modes whose dynamics are well known: classical
Rossby basin modes in a rectangular, flat-bottom basin.
Theoretical considerations indicate that closed basins
with idealized geometry exhibit a spectrum of planetary
wave modes, also known as Rossby basin modes
(Longuet-Higgins 1964). These basin modes are super-
positions of Rossby waves that satisfy the boundary
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conditions of a basin. If sea surface variations can be
ignored in the vorticity balance (small Froude number;
justified for deep or small basins), the streamfunction
�(n,m) of a normal mode of a rectangular basin with
dimensions L1 � L2 consists of a carrier wave and an
envelope of sine functions:

��n,m� � cos� �0x

2��n,m�

� ��n,m�t� sin
n�x
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m�y

L2
, �1�

where x and y are the zonal and meridional coordi-
nates, t is time, �0 is the gradient of planetary vorticity,
and �(n,m) is the frequency of the mode with mode num-
ber (n, m). Its period is given by
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There is a fundamental equivalence between gradi-
ents in planetary vorticity and bathymetry in the vor-
ticity balance of barotropic fluids. This equivalence can
be made explicit by expressing the gradient of potential
vorticity f /H in terms of an “effective �” field, �* �
�0 	 f � lnH, where H is the variable water depth (Ripa
1978). In fact, when one considers the basin modes (1)
as eigenvectors of the barotropic vorticity equation
(formulated in terms of streamfunction 
; Pedlosky
1987),

�

�t
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��
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� 0, �3�

it is clear that for reasonable choices of bathymetry the
“dynamical core” of this equation does not fundamen-
tally change when �0 is replaced by �*. This suggests
that the spectrum of basin modes of the flat-bottom
configuration should carry over to nonflat geometries,
and that the physics of propagation is invariant under
such a transformation (unless strong interaction be-
tween modes occur). So tracing a mode in a realistic
basin to its mode of origin from classical theory (deter-
mining its “spectral origin”) will provide a clue about its
mechanism of propagation.

In this paper we will attempt to establish connections
between the basin modes of the Argentine Basin and
Rossby basin modes of classical theory. To that end,
we will perform a “homotopy” transformation that
smoothly transforms the Argentine Basin into a flat-
bottom rectangular domain. The eigenmodes will be
traced during this transformation. When the limit of the
rectangular domain is reached, the resulting modes will
be compared to the patterns and oscillation periods of
the classical modes [i.e., (1) and (2)].

A similar procedure will be applied to estimate the
sensitivity of these basin modes with respect to friction,
domain size, and background circulation. Tracing
eigenmodes through parameter space has led to illumi-
nating results regarding tropical ocean–atmosphere
variability (Jin and Neelin 1993), low-frequency vari-
ability of the wind-driven circulation (Simonnet and
Dijkstra 2002), and variability of the overturning circu-
lation (Dijkstra 2006).

2. Barotropic Rossby basin modes of the
Argentine Basin

a. The shallow-water model

We study the normal modes of the Argentine Basin
using a barotropic shallow-water (SW) model. It is
based on the code used by Schmeits and Dijkstra
(2000), but includes full bathymetry and bottom fric-
tion. The set of equations is given by
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Here (u, �) are the depth-averaged zonal and meridi-
onal velocity components; h � H0 � � 	 hb is total

TABLE 1. Model parameters and their standard values.

Symbol Scales Value

H0 Equilibrium depth 6288.6 m
r0 Earth’s radius 6.37 � 106 m

 Earth’s rotation rate 7.272 � 10	5 s	1

g Gravitational constant 9.8 m s	2

� Density 1020 kg m	3

Ah Horizontal viscosity 3.0 � 103 m2 s	1

r Bottom friction 3.64 � 10	6 s	1
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water depth, with H0 denoting maximum equilibrium
depth, � denoting sea surface elevation, and hb denot-
ing bathymetry; � and � are east longitude and latitude,
respectively, expressed in radians; and �� and �� denote
zonal and meridional wind stress. In this paper, only
unforced solutions are considered (�� � �� � 0), but
realistic wind stress is used in Part I for transient inte-
grations. Model parameters and their values are tabu-
lated in Table 1.

The model domain covers the region between 50°
and 25°S, 291° and 345°E, 	 and includes the Argen-
tine Basin. The numerical grid consists of 106 � 100
grid points, which is equivalent to a spatial resolution of
0.5° � 0.25°. Bathymetry is based on the 2-minute grid-
ded elevations/bathymetry for the world (ETOPO2)
dataset, box-averaged onto our model grid (Fig. 1a).

Depths smaller than 300 m (the continental shelf) are
set to zero.

The discretized SW equations can be expressed as

M
�x
�t

� Lx � N�x� � 0, �7�

where x denotes the state vector, M denotes the mass
matrix, L denotes the linear operators, and N denotes
the nonlinear operators. Let x be a steady solution of
this system, and let x̃ be a small perturbation such that
x � x � x̃. Neglecting terms quadratic in the perturba-
tions, we get

M
�x̃
�t

� L x̃ � Nx�x�x̃ � 0, �8�

FIG. 1. End-member bathymetries used in the normal-mode analysis: (a) full bathymetry
Hfull, (b) flat-bottom Argentine Basin Hflat, and (c) rectangular basin Hrect. Gray shading
denotes water depth (km); contours show log( f /h), plotted for the interval [	8.0, 	7.0] with
step 0.02. White contour denotes 	7.74 value.
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FIG. 2. Spatial patterns of the Rossby basin modes for (left) full-bathymetry [(�, �) � (0, 0)], (center) flat-bottom
[(�, �) � (1, 0)], and (right) rectangular basin [(�, �) � (1, 1)]. Upper plot in each panel shows the real part of the
mode (x̂r); lower plot shows the (minus) imaginary part (	x̂i). Time sequence goes as follows: x̂r → 	x̂i → 	x̂r →
x̂i. (a) Mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, and (f) mode 6. Note that for mode 3 no equivalent
rectangular Rossby basin mode could be found. Units are arbitrary; color scale ranges from blue (	max|� |) to red
(max |� |), and centers around green (0).
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where L � Nx � A is the Jacobian matrix. Inserting the
generic form x̃ � x̂e�t leads to a generalized eigenvalue
problem of the form

Ax̂ � �Bx̂, �9�

where B � 	M. Here, � � �r � i�i is the complex
growth factor: the decay time scale of x̃ (and hence the
linear stability of the state x) is determined by its real
part according to 1/�r, while the oscillation period is
given by 2�/�i. The eigenvectors x̂ for each � are called

FIG. 2. (Continued)
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the eigenmodes associated with x. If �i � 0 the mode
is oscillatory and these eigenmodes are complex: x̂ � x̂r �
ix̂i. The oscillation proceeds as x̂r → 	x̂i → 	x̂r → x̂i → . . . .

For most of this study, a motionless background so-
lution x is considered. This assumption renders Nx(x) �
0 and basically eliminates all nonlinear advective terms,
as well as nonlinear inertial terms that arise from the
spherical geometry.

A powerful method to solve the generalized eigen-
value problem (9) is the Jacobi-Davidson “QZ”
method (JDQZ; Sleijpen and Van der Vorst 1996). This
method calculates eigenvalues that are closest to a pre-
specified target value. Once an eigenvalue has been
found, and the corresponding eigenvector has been de-
termined, one can easily trace the evolution of this
eigenmode versus model parameters.

In this study we want to find out whether the full-
bathymetry modes are related to the classical Rossby
basin modes of a corresponding rectangular basin. Es-
tablishing a connection between the spectrum of the
full-bathymetry case and the countable set of modes
from classical theory would assign a “spectral origin” to
each of the modes, and would provide useful informa-
tion about the number of modes that can be expected.
To establish this link, we will transform the basin ge-
ometry from the full-bathymetry case (Hfull; Fig. 1a) via
a flat-bottom (constant depth) Argentine Basin (Hflat;
Fig. 1b) to a rectangular configuration (Hrect; Fig. 1c).
The gradual transition will be governed by so-called
homotopy parameters � and �, through

H � �1 	 ����1 	 ��Hfull � �Hflat� � �Hrect. �10�

We calculate a prespecified number of modes (usu-
ally 8) at fixed values of � and � between 0 and 1. By
following the growth factor and angular frequency, the
evolution of individual modes can be traced. The com-
plex eigenvalues � � �r � i�i usually vary smoothly
with � and �, and the pairs (�r, �i) form distinct clusters
for each mode that facilitate identification. When in
doubt, the spatial patterns clearly identify the modes,
making this process unambiguous.

b. Rossby basin modes of the Argentine Basin

For the full-bathymetry Argentine Basin, seven
eigenmodes are found with periods below 50 days. We
will focus on the six modes that can be identified as
Rossby basin modes. As shown by Fig. 2 (left panels),
these modes differ considerably in their spatial pat-
terns. Modes 1 to 4 all display rotating multipole struc-
tures. Modes 1, 3, and 4 are characterized by a bipolar
pattern, which is either large-scale (modes 1 and 4) or
small-scale (mode 3). Mode 2 features a quadrupole
structure. Modes 5 and 6 are most prominent in the

eastern part of the Argentine Basin. They feature
anomalies that appear to propagate southward.

Figure 3 shows the temporal evolution of the first
four modes in the full-bathymetry case. It is clear that
the propagation of these modes is strongly controlled
by the contours of f/H, which appear to form wave-
guides. Mode 1 is strongly governed by the semicircular
shape of the f/H contours on the western flank of the
Zapiola Rise. Mode 2 appears to be a higher-order
mode captured by this same dynamical feature. In con-
trast, mode 4 is controlled by the semicircular f/H con-
tours on the eastern flank of the Zapiola Rise, while
mode 3 seems to propagate along a small circular con-
tour southeast of the Zapiola Rise. Interestingly, nei-
ther of these modes go totally around the Zapiola Rise.
In particular, both modes 1 and 4 seem to have a rapid
“short-circuiting” phase that transports anomalies more
or less over the Zapiola Rise.

For the current choice of parameter values, the decay
time scale Tdecay of these basin modes is about 3 days
(Table 2). The oscillation periods Tfull range from about
20 days for mode 1 to 45 days for mode 6.

c. The spectral origin of the basin modes

The transformation of the Argentine Basin to a rect-
angular configuration takes place in two steps. First, the
bathymetry of the Argentine Basin is flattened out
(through the parameter �) until the flat-bottom geom-
etry Hflat is reached. Then, the flat-bottom Argentine
Basin is transformed (through �) into a rectangular ge-
ometry, Hrect (Fig. 4b). The end point, � � 1, could not
be reached due to the depths surrounding the basin
becoming zero, but � � 0.97 is close enough to enable
a consistent description.

As shown by Fig. 4, each of the modes 1 through 6
can be followed to the flat-bottom domain, and, except
for mode 3, to the rectangular geometry. As is evident
from Fig. 2, the transformation of the basin modes is
striking. Most modes evolve from relatively small-scale,
often rotating structures into basin-filling, westward
propagating signals. Mode 3, for example, evolves from
a small-scale structure around the Zapiola Rise with a
period below 30 days to a basin-filling oscillation with a
period exceeding 60 days for Hflat (Table 2).

The spatial structures of the modes for � � 1 (Fig. 2;
right columns) can be compared to the patterns of clas-
sical Rossby basin modes of rectangular basins, Eq. (1).
Table 2 shows the likely mode numbers (n, m) based on
this comparison, the periods T(n, m) predicted from Eq.
(2), and the actual period of the modes calculated for
� � 1 (Trect). As a matter of fact, the calculations for
� � 1 reveal the entire spectrum of lowest-order clas-
sical basin modes (Table 3).
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However, not all the modes could be traced through-
out the (�, �) plane. As eigenvalue branches should be
continuous in the parameters, these modes cannot dis-
appear. The origin of this problem is a numerical one:
the spatial scale of these modes becomes too small to
resolve on the chosen grid and the JDQZ method can-
not detect them anymore. This is the case for mode 3,
which cannot be followed beyond � � 0.21. Although
its trace seems to end on the curve of mode 7, a merging
of these modes can be excluded, since their decay time
scales do not converge.

In addition to the 6 numbered modes that were de-
termined for Hfull, a mode was found with a period of
41.6 days. This mode, called mode A, could not be fol-
lowed beyond � � 0.65. It seems to originate from
bathymetric features outside the Argentine Basin in the
northeast corner of the model domain. In contrast to
the other modes, its period (Fig. 4a) and spatial pattern
are insensitive to the presence of bathymetry (mea-
sured by the parameter �). The nature of this mode is
not clear, but it does not appear to be a basin mode of
the Argentine Basin.

FIG. 3. Temporal evolution of modes 1–4 for the full-bathymetry case, zoomed in on the Zapiola Rise region. The
four snapshots are 1/8th of a period apart and define one-half of an oscillatory cycle. Contours show log( f/h),
plotted for the interval [	8.0, 	7.5] with step 0.02.
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Starting from the other end of the transformation,
the continuation of mode C [the (4, 1) basin mode]
stalls at � � 0.66. Mode B [the (2, 1) mode] could not
be identified for � � 0, and there is not a trace of this
mode in the �-segment. Inspection of the spatial pat-
terns close to � � 0 suggests that the mode is linked to
activity on the relatively shallow areas outside the Ar-
gentine Basin. Modes 7–9 are high-order modes that
could be traced back all the way to � � 0 (curves not
shown), where they transform into long-period oscilla-
tions.

3. Sensitivity

a. Sensitivity to domain size

Basin boundaries play an essential role in the dynam-
ics of classical basin modes. This raises the question of
whether the limited domain size of the full-bathymetry

case influences the spatial patterns and oscillation pe-
riods of the eigenmodes. To investigate this, we re-
peated the calculations for a larger domain, now
stretching from 55° and 20°S, 290°E to 360°.

The results (not shown) confirm that the modes are
not influenced by the exterior domain boundaries: all
modes are recovered with exactly the same spatial pat-
terns, and with identical time scales. It is therefore clear
that the relevant “boundaries” are provided by the
natural geometry of the Argentine Basin (i.e., its almost
closed contours of f /H).

b. Sensitivity to friction

To investigate the sensitivity of the oscillation period
and decay time scale to the specific choice of frictional
parameters, we repeated the normal-mode analysis for
different strengths of bottom friction (r) and horizontal
viscosity (Ah); in particular the decay time scale and
oscillation period of modes 1 and 4 are monitored (Fig.
5). In one set of computations Ah is changed with fixed
r (Fig. 5b; black lines in Fig. 5a), in the other r is de-
creased while keeping Ah constant (Fig. 5c; gray lines in
Fig. 5a). The most striking result is that bottom friction
strongly controls the damping of the modes, but does
not influence their oscillation periods. Lateral viscosity,
on the other hand, mostly affects the oscillation period.

How much can we expect the oscillation periods to
change when friction parameters are reduced from
their standard values to the inviscid limit? Since Toscil is
insensitive to r, we expect that reducing bottom friction
will not lead to substantial changes in the period. In
addition, Fig. 5b suggests that the periods are also rea-
sonably well converged with respect to Ah. Since the
modes are confined to the Argentine Basin and not
influenced by Ah-dependent boundary layers at the

FIG. 4. The transition of eigenmodes from (a) the full-bathymetry (Hfull) to the flat-bottom
Argentine Basin (Hflat), as governed by �, and (b) from Hflat to the rectangular domain (Hrect),
as governed by �. The six fundamental modes with periods below 50 days (at � � 0) are
plotted. A cross indicates the position where a curve could not be followed any farther.
Dashed line denotes other modes as discussed in the text.

TABLE 2. Characteristics of dynamical modes 1–6; Tdecay is the
decay time scale (days) for standard parameter values; Tfull, Tflat,
and Trect denote the periods (days) of the modes for the full-
bathymetry (Hfull, � � 0), flat-bottom (Hflat, � � 1), and rectan-
gular basin (Hrect, � � 1), respectively. The mode numbers of
the corresponding rectangular Rossby basin mode are given by
(n, m), and Tn,m is an estimate of its period based on (2); TBG1 and
TBG2 are the oscillation periods for two different background
flows.

Mode Tdecay Tfull Tflat Trect (n, m) Tn,m TBG1 TBG2

1 3.0 19.6 21.6 20.3 (1, 1) 19.5 19.8 19.9
2 2.9 22.7 34.0 35.4 (1, 2) 34.0 22.2 22.7
3 2.7 27.7 61.1 — — — 26.5 27.0
4 2.9 31.5 47.1 41.2 (2, 2) 38.6 32.9 32.8
5 2.8 39.7 39.8 36.8 (3, 1) 35.5 41.8 40.6
6 2.7 45.2 50.5 56.7 (2, 3) 52.8 49.0 46.7
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sidewalls, one can be confident that no large changes in
period occur below Ah � 500 m2 s	1.

The damping time scale of the modes, on the other
hand, is strongly related to the value of the friction
parameter r. The value chosen for the standard con-
figuration (Table 1) is comparable to the best estimate
of Hirose et al. (2001), who compared a global 1.125°
shallow-water model with altimeter observations. How-
ever, it is likely that the true value of r (i.e., the value
that is appropriate for this resolution and for this re-
gion) is much lower. Although the modes in this model
configuration are strongly damped, it is shown in Part I
that they are easily excited by stochastic forcing.

c. Sensitivity to background flow

To study the sensitivity of the modes with respect to
a background circulation, we repeated the normal-
mode calculations for the six basin modes in the pres-
ence of background circulation. To represent the back-
ground circulation in the Argentine Basin, we use the
barotropic velocity field of the U.K. high-resolution
model OCCAM. Both the time-mean fields are used, as
well as a particular snapshot that was chosen based on
the presence of a particularly strong zonal current (Fig. 6).

The flow fields display a confluence of a northward
flowing Malvinas Current and a southward flowing Bra-
zil Current at 42°S. A recirculation cell is visible in this
region, as well as an eastward jet (South Atlantic Cur-
rent) arising from the confluence. As in most models,
an intense Zapiola anticyclone (Saunders and King
1995a; De Miranda et al. 1999) is absent.

The normal-mode calculations are repeated with ei-
ther the time-mean (BG1) or the snapshot velocity field
(BG2) as background flow. Technically, these velocity
fields enter the equation as x through the Jacobian ma-
trix Nx in Eq. (8). The resulting oscillation periods are
listed under TBG1 and TBG2 in Table 2. These results
show that the modes and their oscillation periods are
only slightly affected by the barotropic background cir-
culation. The periods of modes 2 and 3 decrease
slightly, while the periods of the other modes increase
somewhat (up to 8% for mode 6). The characteristics of
the spatial patterns of the modes remain intact.

Since the OCCAM model does not represent the Za-
piola anticyclone, an additional analysis was performed
to study the sensitivity of modes 1 and 4 with respect to
an anticyclonic circulation around the Zapiola Rise. To
represent this anticyclone, a Gaussian high-pressure re-
gion was constructed, centered at 45°S, 317.5°E, with a
5° half-width. A flow field was prescribed to be in geo-
strophic balance with this sea surface elevation. Char-
acteristic flow velocities in this region are of the order
of 0.1 m s	1 (Saunders and King 1995b). Given the
characteristics of the Gaussian shape, this is achieved
by a sea surface elevation of about 0.5 m. Assuming a
water depth of 5000 m, this corresponds to a transport
of 230 Sv (1 Sv � 106 m3 s	1). It is clear that this esti-
mate is on the high side of possible values.

The anticyclone indeed reduces the oscillation peri-
ods of the two dominant modes 1 and 4, as can be
expected from advection of anticyclonic modes by an
anticyclonic circulation. The period of mode 1 is re-

TABLE 3. Interpretation of modes 1–9, and modes B and C, in
terms of their mode number in zonal (n) and meridional (m)
direction.

m\n 1 2 3 4

1 1 B 5 C
2 2 4 8
3 7 6 9

FIG. 5. Sensitivity of modes 1 (dashed lines) and 4 (solid lines)
with respect to friction parameters r and Ah. (a) Oscillation period
and decay time scale for computations where only Ah is changed
(black lines) or r (gray lines). (b) Oscillation time scale as function
of Ah. Curves correspond to black lines in (a). (c) Decay time
scale as function of r. Curves correspond to gray lines in (a). Black
dots denote the solution corresponding to the standard values of
Table 1.
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duced from 19.6 to 18.5 days, whereas the 31.5 days of
mode 4 is reduced to 29.7.

4. Discussion and conclusions

An unbounded, flat-bottom (constant depth) ocean
on a rotating sphere supports a continuous spectrum
of Rossby waves, which are controlled by the gradient
in background potential vorticity f /H. When meridional
boundaries are taken into account, a discrete spec-
trum of modes arises, so-called Rossby basin modes
(Longuet-Higgins 1964). Many studies have shown that
bathymetry drastically affects the propagation charac-
teristics of Rossby waves and basin modes (e.g., Rhines
1969; Anderson and Killworth 1977; Ripa 1978; Platz-
man 1975; Platzman et al. 1981; Miller 1986; Miller et al.
1987; Miller 1989). In fact, Koblinsky (1990) showed
that there are relatively few places in the World Ocean
where the planetary vorticity gradient �0 is the domi-
nant component of the potential vorticity gradient.

Nonetheless, classical theory may still be important
for determining the spectrum of modes in realistic ba-
sins. As outlined in the introduction, bathymetry ex-

pands the vorticity balance of a homogeneous fluid with
a topographic-� effect, �T � 	f � ln H. For reasonable
choices of bathymetry, a smooth transition between the
full-bathymetry and flat-bottom cases can be defined
that leaves the spectrum of eigenmodes intact. In this
paper a connection was established between the spec-
trum of barotropic basin modes of the Argentine Basin
and the classical basin modes in a flat-bottom, rectan-
gular domain. The Argentine Basin modes can there-
fore be interpreted as vortical modes that are con-
trolled by the gradient in background potential vorticity
f /H.

Miller et al. (1996) were the first to unambiguously
observe a topographic Rossby mode, which propagated
along the Iceland–Faeroe Ridge between the Faeroe
Islands and Iceland. More recently, Beckenbach and
Washburn (2004) observed a Rossby mode in the Santa
Barbara Channel, which appeared to be governed by a
rather uniform tilt in seafloor. The interpretation of
these modes in terms of vorticity was facilitated by a
relatively uniform distribution of f /H contours, and a
relatively small domain size.

The bathymetry of the Argentine Basin is severely

FIG. 6. Impression of (a) the time-mean and (b) a snapshot of the streamfunction of the
barotropic flow in the Argentine Basin from the high-resolution model OCCAM. Streamlines
are plotted at a 2.5-Sv interval. OCCAM barotropic velocity fields are interpolated onto our
model grid. Streamfunction is calculated by integrating the interpolated meridional velocity
vertically and eastward, using the bathymetry of the SW model. Because of small discrepan-
cies in bathymetry between OCCAM and this model, and interpolation errors, the barotropic
transport is not fully divergence free. No efforts have been made to correct for this, since this
would have made a negligible impact on the normal-mode calculations.
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complicated by the presence of the Zapiola Rise, which
leads to strongly convoluted contours of f /H. The im-
pact of this seamount is clearly illustrated by the white
contours in Fig. 1. Nonetheless, the Argentine Basin is
large enough that the gradient of planetary vorticity is
not negligible (Fig. 7). Although the gradient of f /H on
the southern flank of the Zapiola Rise is clearly domi-
nated by the topographic component, there are exten-
sive areas in the Argentine Basin, most notably the
northern half and the southwest corner, where the plan-
etary component is dominant. In this context it is not
straightforward which of the full-bathymetry modes
portrayed in Fig. 2 (left columns) should be considered
to be the fundamental mode, nor how many low-order
modes there should exist. Here the explicit connection
to the spectrum of classical modes is useful to interpret
the full-bathymetry modes.

It could be argued that the full-bathymetry modes
are governed by local topography only, and have no
significance for the entire basin. Obviously it is hard to
establish in detail how the mode selection takes place,
and why, for instance, the large-scale rotating mode 1 is
related to the (1, 1) classical mode, and mode 4 to the
(2, 2) mode, while both of them seem to be a funda-
mental mode on the local bathymetry (the semicircular
contours of f /H on the west and east side of the Zapiola
Rise, respectively; Fig. 3). However, Fig. 4 shows (i)

that the connections exist, and (ii) that there is a general
tendency for the lowest-order modes of the full-bathy-
metry basin to be related to the lowest-order modes of
classical theory, while higher-order modes tend to re-
tain their high-wavenumber character.

As a matter of fact, studies like Miller et al. (1996),
Beckenbach and Washburn (2004), and Pierini (1996)
apply a similar transformation of a flat-bottom basin to
a rectangular domain to identify the fundamental mode
in their observations or modeling results. They hence
implicitly assume an equivalence between this mode in
their real ocean domain and in a rectangular basin with
homogeneously distributed contours of f /H. In this
study this equivalency is taken a step further by not
only assuming equivalence of a rectangular basin
(Hrect) with a flat-bottom basin with realistic topogra-
phy (Hflat), but also with a basin with full bathymetry.
The idea that the spectrum of classical Rossby modes
remains invariant under transformation to a real ba-
sin—albeit with sometimes strong modifications to the
spatial patterns and oscillation periods of the individual
modes—may guide future studies addressing the baro-
tropic spectrum of (semi)enclosed basins, especially
those for which the planetary vorticity gradient is not
negligible.

Note that the transition from basin-scale modes to
modes captured by localized topography is often ac-

FIG. 7. Base-10 logarithm of the ratio between the gradient of “topographic” vorticity
| f � lnH| and its planetary counterpart �0. Positive values mean a ratio �1 and hence a
dominance of the topographic over the planetary component. Values exceeding 1 are found
only on the continental slope. Contours show log( f /h), plotted for the interval [	8.0, 	7.5]
with step 0.02.
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companied by counterbalancing effects on the oscilla-
tion period (Ripa 1978). The trend toward smaller
scales tends to increase the oscillation period, while the
trend toward often higher gradients of ambient poten-
tial vorticity (due to the dominance of topographic ef-
fects) tends to reduce it. For almost all modes presented
in Table 2 the latter effect appears to dominate.

Except for mode 3, all of the modes 1–6 could be
traced back to classical modes. However, not all of the
classical modes could be followed in the reverse direc-
tion to the realistic basin. In particular, the fact that the
low-order (2, 1) mode B could not be followed all the
way to Hfull might appear somewhat worrisome, since
its oscillation time scale is of the right order when com-
pared to the 25-day oscillation found in observations
(Fu et al. 2001). However, its large-scale structure dis-
appeared when approaching Hflat and its focus shifted
to the shallow areas outside the basin. No trace was
found of this mode in the � segment of the domain
transformation (connecting Hfull and Hflat), despite ex-
tensive calculations. For reasons that are not fully un-
derstood, this mode does not seem to correspond to a
basin mode of the full-bathymetry Argentine Basin.

A sensitivity study with respect to friction shows that
the decay rate of the modes is strongly controlled by
bottom friction, but not at all by horizontal viscosity.
Given the large uncertainties in the amplitude of bot-
tom friction, it is clear that the decay rates determined
here are not well constrained. The oscillation period of
the modes, on the other hand, appears to be affected
mainly by horizontal viscosity. Based on Fig. 5b, it
seems reasonable to conclude that the base value of Ah

used in this study (3.0 � 103 m2 s	1) is small enough to
assume that the oscillation periods of the eigenmodes
are determined with reasonable accuracy.

The analysis in section 3 showed that the modes
were scarcely affected by the barotropic circulation of
OCCAM, or by a strong Zapiola anticyclone. This may
not be surprising when comparing the large spatial scale
of the modes [O(105–106 m)] and their relatively short
time scale (20–30 days), with the typical width [O(104

m)] and velocity [O(10	1 m s	1)] of oceanic jets like
the South Atlantic Current (Stramma and Peterson
1990) or the Zapiola anticyclone (Saunders and King
1995b).

The most important control on the modes is exerted
by bathymetry. This may be considered good news for
modelers, since in most areas of the World Ocean
bathymetry is better known than the mechanisms of
frictional decay, especially on the larger spatial scales
that are important for barotropic modes. This finding
also shows, however, that care should be taken when
smoothing bathymetry. Bathymetric smoothing is most

often applied in low-resolution models to assure nu-
merical stability. However, it flattens out bathymetry in
much the same way that increasing � flattens out the
Argentine Basin in this study. As an example, Hughes
et al. (2007) discuss the variability in the sigma-
coordinate model used by De Miranda et al. (1999), and
found an oscillation with a period of about 22 days. The
spatial pattern of the dominant CEOF clearly displays
the plane-wave propagation characteristic of classical
basin modes. This suggests that filtering bathymetry has
reduced the topographic features and put the model in
the domain � � 0. Yet, it also confirms the conclusion
of Part I that these models really reproduce the funda-
mental barotropic basin mode, but not the 25-day
mode.

In this study, the basin modes were traced through
parameter space in a rather ad hoc fashion, as many
modes were calculated for closely spaced parameter
values. In most cases the connection between modes
could unambiguously be determined, since both the
growth rate and oscillation period of the modes change
smoothly with � and �. However, in a few cases modes
were “lost” beyond certain parameter values. This was
attributed to the modes developing spatial scales that
are too small to resolve. Possibilities to apply param-
eter continuation techniques to follow eigenmodes
through parameter space are currently being consid-
ered for implementation.
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